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INTRODUCTION 

The theory of magnetic monopoles makes us reconsider topological 
assumptions that lie rather close to the foundations of physics, such as the 
smoothness of time space. The strings Dirac attached to his monopoles are 
among the earliest of the topological variables of physics, which now include 
string and bag hadron models, holes and singularities of curved time spaces, 
and homotopic charges (kinks) of topologically nonlinear field theories. Here 
I shall outline how far this topological trend has gone in physics, and how far 
I think it will go. Topological methods are mainly useful in nonlinear prob- 
lems, and this trend to topology is part of an ongoing delinearization of 
physical theory resulting from its progressive deepening. Since Newton's First 
Law, linear theory has described just the asymptotic and uneventful-seeming 
parts of the physical process. More and more we recognize lately that no part 
of the world is actually uneventful, and that linearity represents only the 
coarseness of our resolution of the fine structure of the physical process. The 
deepening of theory that leads to delinearization and topologization is 
the increase in our resolution of that fine structure, above all in our search 
for the origin of "elementary" particles or quanta, and the approach to a 
holistic physics. 

The path to foundations I am following (there are others) can be 
represented by six steps. 

1. "LINEAR" FIELD THEORY 

This is the level of Maxwell's equations for the free electromagnetic field, 
with canonical commutation relations. The existence and the action scale of 
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the photon come from the quadratic commutation relation, the sole nonlinear 
element of this "linear" theory. (Of course, the existence of particles is always 
associated with some nonlinearity.) But where do electrons (photon sources) 
come from ? 

2. NONLINEAR FIELD EQUATIONS 

Even before the quantum theory, Mie, Einstein, Weyl, and others tried 
to make particles out of blobs of field. They believed that nonlinear self- 
interactions would cause the field to clot. Right they were, though it took the 
development of electronic digital computers to prove it; these surprisingly 
particle-like nonlinear field objects are often called solitons today. Are electric 
charges solitons of the electromagnetic field ? This is the most ambitious 
application of soliton theory, requiring a new set of electromagnetic field 
equations like Born and Infeld's. Where would the needed modification of the 
Maxwell field equations come from ? 

3. NONLINEAR FIELD VARIABLES 

There are field theories where that question is less urgent because the 
field variables are themselves topologically nonlinear, admit no continuous 
superposition, and have no linear theory. 

Objects called topological solitons, or kinks, or homotopic charges, may 
then arise that are preserved in number not merely by the dynamic evolution 
but by any continuous evolution or homotopy. 

The simplest example is Skyrme's equation [~o + sin ~0 = 0, where the 
range of the field variable ~0 is a circle, not a line. Skyrme's solitons are well 
known. 

The most familiar and important example is Einstein's equation R,v = 0, 
where the range of the field variable g,~ is the set of symmetric tensors of 
signature 1-3, a quotient space of the group GL(4, R) (by a Lorentz subgroup). 
Kinks in g,~ were important in initiating the modern work on black holes. 
(Spherical g~ kinks are surrounded by trapped surfaces.) 

An ambitious example is Pisello's (1978) suggestion that electric charges 
are indeed homotopic charges, topological solitons, related to photons as 
Skyrme's kinks are to the small oscillations in Skyrme's field. Pisello's field p 
has range S 2, the unit sphere in a three-dimensional space, and is related to 
the electromagnetic field F,~ by 

F~,v = %a~up'~Ovp B 

where the p~ are local coordinates on S 2 with spherical volume element 
(dpZ) = @1@2 and e~a is the 2 x 2 Levi-Cevita form. Pisello's theory has 



Holistic Methods 295 

some remarkable features: the current density~j ~ of  its homotopic charge is, 
by a result of  Whitehead, 

j "  = P"VA v ~"" =_. ~"~'F~B~B 

(where A~ is any vector potential for F ~) and is just the Maxwell current 
density O~F ~ by virtue of the variational principle 3f F2d4x = 0 for the 
field p(x) ,  where F 2 = F~'VF~,~ as usual. 

As Pisello's model illustrates, gauge theories can be found on this level. 

4. NONLINEAR GLOBAL TIME SPACE 

Einstein's theory of gravity leads one to abandon the topological linearity 
of  time space as well as field space, since the simplest solution, that of  
Schwarzschild, leads by analytic continuation outside the realm of  topo- 
logically linear time space. I pass quickly by the distracting beauties of  this 
level to reach the next, pausing only to mention an observation of Sorkin 
0977) that is particularly relevant to monopole theory. Sorkin divides all 
space R 8 by a torus S 1 x S 1 into two parts, inside and outside the torus, and 
discards the inside. He then removes the toroidal boundary of the outside 
space by an identification of  the point (% 0) on S 1 x S ~ with (% ~r + 0), 
creating a nonorientable manifold. I f  a magnetic field is normally outward 
at (% 0), verify that it is normally outward at (% ~, + 0) also, by continuity 
through the torus. It may thus be outward everywhere, yet divergenceless. 
Thus a monopole requires no magnetic source density or divergence in such a 
manifold. Sorkin uses this configuration not to model magnetic monopoles, 
which are scarce, but electric ones, which are plentiful, making E rather than 
B an axial field for the purpose. 

5. NONLINEAR LOCAL TIME SPACE 

Physical computations with nonlinear fields in nonlinear time spaces are 
so difficult and apt to diverge at small distances that they lead us to question 
the validity of the time space continuum at small distances. A manifold is a 
locally linear space. There are no operational grounds for this local linearity. 
Indeed the Bohr-Rosenfeld theory of measurements at a point requires such 
nonrealistic test charges as to make local linearity doubtful. The main reason 
for assuming it has been the absence of practical working alternatives. I have 
attempted to suspend local linearity too. 

This requires a new attitude toward the geometric invariance groups of 
physics:: translation, rotation, etc. The usual translation x - - > x  + a, for 
example, is either not observable (if it refers to the whole process) or not an 
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exact invariance (if it refers to the object of  the experiment only), since the 
outcome of an experiment depends on where it is carried out in relation to 
any actual reference system. This can be put more formally as a principle of  
asymmetry: There are no symmetries.  Here is why I posit this principle. 

Only those properties of  the entire situation are observable that are 
invariant under the automorphisms of  the theory. (I learned this principle 
from J. L. Anderson at our first meeting.) Therefore exact automorphisms 
change no observable properties, and are unobservable. In accord with the 
operational thrust of  quantum mechanics and relativity, I eliminate these 
unobservable transformations, and all exact symmetries. I therefore assume 
there are no symmetries (in the basic theory of microsystems, demanding that 
in the macroscopic limit the usual invariances return as a limit of approximate 
symmetries). 

What is left seems to be a world that is a pattern of  elementary discrete 
quantum processes. In one series of  attempts, the world is represented as a 
checkerboard, with two possible directions of motion at each vertex. Instead 
of x ~ = f dx  ~, I put x" = ~- ~ ~,", with finite noncommutative "differentials." 
Here translational invariance is renounced but the isotropy of time space is 
retained by admitting coherent superpositions of the two directions as well, 
which therefore transform under SL(2, C), which covers the Lorentz group 
twice. It is possible to describe a Dirac spin-{ particle in such a quantum time 
space, with a mass spectrum proportional to 1/~-. This theory violates the 
principle of asymmetry. The surviving symmetry is that of the two-dimensional 
spin state space, which I now attack, 

6. NONLINEAR STATE SPACE 

We come now to what must surely be the last linearity, please, that of the 
Hilbert space of  states. The state space is a way of representing the selection 
rules A) ---> )B for quantum transitions from (pure) effectors A) to receptors 
)B, telling which are forbidden, which are allowed. These determine the linear 
space uniquely, but not the metric, z 

The Minkowskian manifold of  relativity and the Hilbert space of  
quantum theory ("time space" and "truth space") seem closer than usual to 
each other in this theory. They are both ways of presenting certain dyadic 
relations, the causal relation (Robb's formulation of relativity) and the 
allowed-transition relation (a formulation of quantum theory). Furthermore, 
the two relations they represent are quite similar in their operational meaning. 
They are both transfer relations, expressing the possibility of a flow from an 
effector to a receptor. In relativity these transmit and receive light signals; in 

2 The compulsory transitions A) N )B determine the metric. 
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quantum theory, individual systems. Since the former are aggregates of the 
latter, relativity's "time space" might be an aggregated'form of quantum 
theory "truth space." 

If  the repertory of processes A) is discrete, so should be the state space. 
Continuity may arise only as an approximation, depending on the macro- 
scopic nature of the experimental apparatus. Therefore I do not imagine that 
the state space description of quantum processes extends down to the basic 
microscopic level. I assume instead that there is a discrete diagram language 
for maximally describing whole processes. 

This is an unusual mode of description. The usual mode I call objective: 
it attempts to suppress the variables of the Subject and deal with the variables 
of the object only, not the whole process. Inobjective theories many properties 
that may actually be relative, such as the continuity of location in time space, 
are considered absolute because they are common tO all sufficiently complex 
observers. The unusual mode we enter here I call holistic: it describes the 
whole situation, as Bohr said the wave function does, but maximally, unlike 
the usual wave function, which grievously slights the subject. 

For diagramsp, p' describing effector and receptor processes, respectively, 
I suppose a given null or exactness relation 

p o p ' .  

meaning in the macroscopic limit that the system ofp is unaffected byp'  and 
not recorded or counted. The quantum analog is (P ' IP)  = O. 

The basic process diagrams p may not be enough language for physics. 
It is part of the concept of a physical determination (and a measurement) that 
it apply to a plurality of cases, not just one. Therefore a determination (or a 
measurement) is not a basic process, but a rule applying to various such 
processes (representing various objects of determination) producing other 
such processes (representing the determination being carried out on the 
object), that is, a kind of process on processes or "metaprocess." Though 
(basic-level) process diagrams may obey the principle of asymmetry, these 
higher-level diagrams need not; a dual symmetry between range and domain 
may appear, represented by arrow reversal. Perhaps this is the seed of time 
space symmetry. 

The main difference between classical and quantum logical structures is 
this: In classical theories, p o p '  holds for all p' but one, depending on p: what 
is not forbidden is compulsory. In quantum theories, p o p '  fai ls  for almost 
allp': what is not forbidden is allowed. But the set ofp '  for which p o p' holds 
determines p in both classical and quantum theories. That determinacy 
survives. 

Let me indicate how the usual linear space is to be reconstructed from 
p o p', in two stages: (a) the lattice of subspaces, then (b) the linear space. 
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(a) A basic question about the relation of  the mathematical language of  
the theory to the physical processes it describes is: 

What sets P of  diagrams p, 

p = (p}  

are associated with (usually nonmaximal) physical determinations within the 
system ? Each such diagram is to describe an entire experiment, including a 
physicist and life-support system or an automatic recording system, in which 
a certain determination is made. I f  the determination is before the fact 
(source, not test; effector, not receptor), I call the set of  diagrams a predicate. 

P is a predicate (I postulate) if and only if there exists a set P '  = {p'} 
of  receptor processes (determinations after the fact) such that p is in P if and 
only i f p  op'  for a l lp '  i n P ' .  

Verify these sets P form a lattice. Make no assumptions about p o p' 
for this (Birkhoff, 1948). 

In a dual way we define a lattice of sets P '  of  recepto r processes, 
copredicates. The two lattices {P}, {P') are connected by two dually-defined 
inclusion-reversing maps P -+ P '  = P0 and P '  --+ P = 0P: 

P0 = {P' in the relation p o p '  to a l lp  in P} 
0P' = {P in the relation p o p '  to all p '  in P'} 

This pair of lattices and mappings is called here the Galois Connection 
(Birkhoff, 1948) of the relation p o p'. Some important cases are as follows: 

1. In Galois' case, p '  is an element of a (number) field, p is an auto- 
morphism of that field, and p o p '  means that p leaves p '  fixed. 

2. Another case: if an integer-valued "inner product" (p, p ' )  is given for 
diagrams, the relation (p, p ')  = 0, taken for p o p',  defines such a Galois 
connection. 

3. For  another kind of  example, take p '  to b'e a point of some fixed 
universal algebra (or relational System, for t ha t  matter), p to be an endo- 
morphism of  that algebra (or system), and p o p '  to  mean that p fixes p'.  Verify 
that this case includes case 2, by taking p '  to be an element of the module of 
dimension n 

N + . . . + N = n N  

over the ring N of the integers. 
(b) The step from lattice to linear space is well known. I f  the lattice is 

reducible, reduce it. The construction is carried out for the irreducible parts, 
which are related by superselection rules. I f  one of these lattices is modular, 
and admits a polarity (=  an isomorphism P ~ P* between the lattices of 
physical effectors and physical receptors, with never pop*) ,  usually not 
unique, then a linear space L(n, F) exists (defined by its dimension n and 
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number  field F)  such that the physical lattice is the lattice of  subspaces of  
L(n, F)  (assuming finite heights > 2 for simplicity). 

This construction proves that the selection rules determine the linear 
space as asserted above. 

For example, suppose an effector diagram p can be described by integers, 
forming a column "vector"  (module element) (pn), and a receptor diagram 
by a dual integer row (p,~), such that p o p" is equivalent to 

pAp'A = 0 

Then the linear space resulting from the calculations of(a)  and (b) is L(n, Rat) ,  
of dimension n over the field of  rational numbers. From the linear space over 
the rational numbers we construct the real numbers by completion, and the 
complex numbers by applying Stone's theorem to the one-parameter unitary 
group of  approximate automorphisms U(t)  representing time translation, 
defining the operator 

i =  (;u-1/lOU-11 
and adjoining i as superselection operator. This may be how quantum complex 
numbers are born. 

The diagram language will already have pr0cessual elements, like verbs; 
for instance, point events a, b, and perhaps also the pair a ---> b representing a 
flux from a to b. I suppose that the null relationp o p '  between diagrams, since 
it too expresses the (im)possibility of  a certain process, is not an independent 
element of  structure, but must be stated in the language. 

After we construct the linear space of states, we must use it to construct 
the time space of relativity, perhaps by the methods of Section 5. The end of 
our exploring will be to return to where we started, macroscopic nature, with 
a rationale for what seems arbitrary at present: the masses and interactions 
of the particles, which are not at all elementary. 
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